header

Preliminary Bone Sawing Model for a Virtual Reality-Based Training Simulator of Bilateral Sagittal Split Osteotomy


Thomas Knott, Raluca Sofronia, Marcus Gerressen, Yuen Cheong Law Wan, Arjana Davidescu, Gerorg Savii, Karls H. Gatzweiler, Manfred Staat, Torsten Wolfgang Kuhlen
International Symposium on Biomedical Simulation (2014)
pubimg

Successful bone sawing requires a high level of skill and experience, which could be gained by the use of Virtual Reality-based simulators. A key aspect of these medical simulators is realistic force feedback. The aim of this paper is to model the bone sawing process in order to develop a valid training simulator for the bilateral sagittal split osteotomy, the most often applied corrective surgery in case of a malposition of the mandible. Bone samples from a human cadaveric mandible were tested using a designed experimental system. Image processing and statistical analysis were used for the selection of four models for the bone sawing process. The results revealed a polynomial dependency between the material removal rate and the applied force. Differences between the three segments of the osteotomy line and between the cortical and cancellous bone were highlighted.



Disclaimer Home Visual Computing institute RWTH Aachen University