Assisted Travel Based on Common Visibility and Navigation Meshes

Sebastian Freitag*

Benjamin Weyers*

Torsten W. Kuhlen*

Visual Computing Institute, RWTH Aachen University, Germany — JARA-HPC, Aachen, Germany

ABSTRACT

The manual adjustment of travel speed to cover medium or large
distances in virtual environments may increase cognitive load, and
manual travel at high speeds can lead to cybersickness due to inaccu-
rate steering. In this work, we present an approach to quickly pass
regions where the environment does not change much, using auto-
mated suggestions based on the computation of common visibility.
In a user study, we show that our method can reduce cybersickness
when compared with manual speed control.

Index Terms: 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques

1 INTRODUCTION

In many larger virtual environments, many regions are mostly empty,
not modeled in detail, or simply of no importance to the user, such that
users often have to travel through less interesting areas. If steering-
based travel techniques are used, this either leads to longer travel times
or the necessity to increase the travel speed. However, changing the
travel speed manually requires the user to control an additional param-
eter (e.g., using a menu), potentially increasing cognitive load and er-
ror rates [3]. Therefore, several methods to automatically adapt travel
speed have been proposed. While it is common to modify the speed
based on the distance to the environment (e.g., [5]), this is impractical
in ground-based interfaces, where the distance to the scene geometry
is largely constant. Alternatively, it has been proposed to adapt travel
speed inversely proportional to the viewpoint quality (a measure of the
informativeness of a viewpoint) at the user’s location [3]. However,
this may lead to speed changes intransparent to the user. Furthermore,
faster travel speeds are in general harder for the user to control and
may lead to errors (e.g., overshooting the target) or cybersickness due
to frequent direction changes caused by inaccurate steering [4].
Therefore, in this work, we propose an alternative ground-based
travel approach, inspired by the observation that the parts of a path
where the environment does not change significantly are often the ones
that users want to pass quickly. These regions can be determined by
finding areas of common visibility, i.e., areas in which the visible parts
of the scene are similar. The proposed interface suggests to quickly
move through these regions on a straight line to avoid errors and
reduce cybersickness associated with changes in direction and accel-
eration. We evaluated our approach by conducting a formal user study.

2 COMPUTATION OF COMMON VISIBILITY

The visibility of the scene from a position can be represented by a
visibility histogram a = (ay,...,a,), where the bin a; represents the
visual size of the i-th object in the scene, i.e., its area when projected
onto a unit sphere around that position [2]. These histograms can be
approximated by rendering a cube map of the scene at the viewpoint
into an item buffer and counting the pixel area of each object [2]. To
automatically determine the objects in a scene, we use the definition
from [2], identifying all basic geometries as individual objects.

*e-mail: {freitag | weyers | kuhlen} @vr.rwth-aachen.de

Co——
|
iy

!

Figure 1: The region of common visibility of the yellow position in a city,
with (cyan) and without (red) capping of the visual size of objects.

However, we additionally split object meshes into their connected
components, considering each a separate object, to avoid that mesh
parts with the same material across the scene (that may be stored as
a single geometry) are recognized as a single large object.

Although the calculation of visibility is often too computationally
expensive to be computed online, it is possible to determine visibility
information by sampling the region of interest in a precomputation
step and interpolate between these samples at runtime. To represent
the region of interest for our method (navigable ground), we use nav-
igation meshes (also called navmeshes). These encode the navigable
surface of a virtual scene as a polygonal mesh, and are commonly used
for automated pathfinding through 3D scenes. We use a navmesh to
sample visibility information, using a default eye height above the ver-
tices of the navmesh as sample points. Then, to compute the visibility
histogram at any position in the navigable area at runtime, we deter-
mine the corresponding navmesh triangle and interpolate between
the histograms determined at its vertices. As obstacles are implicitly
encoded in the structure of the navmesh, this interpolation is never
performed through an obstacle, avoiding large interpolation errors.

However, navmesh vertices may be far apart, reducing the accuracy
of the interpolation. Therefore, we refine the navmesh when the visi-
bility information at adjacent vertices differs too much. For each edge,
we compute the histogram intersection HI(a,b) = ¥;min(a;,b;) €
[0,1] of the (normalized) visibility histograms a and b of its vertices.
If HI(a,b) < 6 for some threshold 6 € [0,1), an edge split is per-
formed, inserting a new vertex at the edge’s midpoint and computing
the visibility for the new position. In this work, we use 8 =0.8, as
this ensured low interpolation errors on our test scenes.

We define the region of common visibility for a position p with visi-
bility histogram v, to be comprised of all positions g where half of the
visible parts of the scene is identical to p, i.e., all points with visibility
histogram v, where HI(vp,v,) > 0.5. To determine the boundary of
the region of common visibility in some direction, the navmesh is
sampled in that direction at every navmesh edge until the histogram
intersection drops below 0.5. We then use binary search on the final
navmesh triangle to find the exact position where it is 0.5. In addition,
we also stop 1 m before the outer edge of the navmesh is reached.

Furthermore, large or close objects (with large visual size) have
large entries in the visibility histogram and can therefore dominate
the determination of common visibility. Therefore, we cap the visual
size of each object at a relative size of 0.025 (about the size of a door
at a distance of 2.5 m), distributing the excess on all other objects
proportionally to their respective visual size. An example for a region
of common visibility computed this way is illustrated in Figure 1.

Figure 2: Visual feedback for a target suggestion in a city (left) and
countryside (right) scene, indicating high (left) and low (right) speed
and distance to the target.

3 TRAVEL METHOD

Our travel method extends a simple ground-based steering-by-
pointing technique, where the user points in the desired direction to go
there. While traveling, the system tries to find a travel target candidate
by computing the end of the region of common visibility in movement
direction. To improve placement, the target position is corrected
along the movement direction based on viewpoint quality (we select
the position with the highest quality within £40% of the distance). In
addition to selecting more favorable targets, this improves the stability
of the target position when it is updated while the user travels.

If the user can save time (at least 2 s) by traveling there quickly, a
suggestion is made, visualized by an arrow on the ground and a gate
at the target position (Fig. 2). The travel speed is chosen out of a set of
discrete speed levels (to provide a better sense of the distance while
traveling) so that the target is reached in at most 2 s, and indicated
by the arrow color. Upon pressing a button, the user is transported
to the target along a straight line. If the terrain on the way is uneven,
the user’s feet are kept at most 2 m above or 0.5 m below the ground
while minimizing the number of (vertical) direction changes.

4 USER STUDY

We conducted a user study to compare our approach (A) against a
ground-based steering-by-pointing technique where the maximum
speed could be changed using a menu (M). Both techniques used an
ART Flystick 2, regulating the movement speed continuously between
0 and the maximum with the Flystick’s joystick. We selected 2 m/s,
8 m/s, 24 m/s and 48 m/s as speed levels for both techniques, using
2 m/s in A for manual travel and the faster levels for suggestions.

The study was performed in a 5-sided CAVE system. We imitated a
realistic scenario, having users travel medium distances and perform
some local task at the target. It consisted of six phases, including one
training phase for each technique, and one trial for each technique on
each of two different, large scenes (a countryside and a city scene).
After being informed about both techniques and the procedure, par-
ticipants entered the CAVE and performed the training with the first
technique, before the first trial with the same technique began. This
was followed by the second training phase and the second trial with
the second technique, and then trials 3 and 4 on the second scene,
before participants left the CAVE to fill out questionnaires.

In each trial, participants had to follow signs to 5 houses, where
they solved a simple search task (find a certain object and touch it with
the Flystick), before traveling to the next house. When they reached
a house, participants were asked to point in the direction of the last
house, and the one where they started the trial. Then, they were asked
how they were feeling, on a scale of 0 (how they felt before the experi-
ment) to 7 (want to abort the experiment), similar to Fernandes et al.’s
discomfort score [1]. A trial ended after finishing the fifth search task,
after which participants could take a short break. The total procedure
took 73 min. on average, 43 of which were spent in the CAVE.

Table 1: User study results.

Variable M: mean (SD) A: mean (SD) p*

traveled distance (per trial) | 1819.4m (135.8) | 1836.4m (206.8) | .584
time (per trial, w/o search) | 176.5s (94.4)| 199.5s (58.8)|.101
pointing error (last house) 19.5° (11.3) 20.8° (13.2)|.542
pointing error (first house) 434° (21.3)| 44.5° (25.8)|.798

discomfort score 1.9 (1.8) 1.3 (1.4)].031
Question (1: applies more to M, 7: more to A) median | IQR | p**

With which method did you reach the target faster? 3 [2,5]1].014
Which method was more precise? 2 [1,3].000
‘Which method was easier to use? 3 [2,41].019
Which method caused more dizziness/discomfort? 3 [2,5].057
‘Which method do you prefer overall? 2 [1,5]1].000

* independent-samples t-tests ** Wilcoxon signed-rank tests (against 4=neutral)

35 unpaid individuals participated in the study (8 female, 27 male,
mean age 27; 9 VR professionals, 13 with previous VR experience, 13
first-time users), 3 of which aborted due to cybersickness. The order
of techniques and scenes was counter-balanced, and participants were
assigned each order combination balanced by gender and experience.

4.1 Results and Discussion

The effects of the travel technique on different measurements, as well
as results from the questionnaires are summarized in Table 1.

Our method caused less cybersickness, as indicated by the discom-
fort score results (questionnaire results pointed in the same direction,
but barely missed significance). The reason for this is probably that
participants moved in straight lines, did not do any curves or speed
changes while moving, and were less affected by uneven terrain,
although some participants commented that the sudden stop when
reaching a target made them dizzy. Furthermore, there were no sig-
nificant differences regarding completion time, traveled distance, or
pointing errors, suggesting that objectively, the methods otherwise
performed similarly. However, participants preferred M, finding it
easier to use and more precise. We suspect this to be due to partici-
pants feeling limited by the choice made by the target suggestions, as
we observed anecdotally that users sometimes ignored well-placed
suggestions, waiting for one that suited them better. This might be
mitigated by giving users a better understanding of the method, e.g.,
by explicitly showing the edge of the region of common visibility.

5 CONCLUSION

We have presented a novel travel method that allows users to quickly
move through less interesting environments, based on the compu-
tation of regions of common visibility and automatic suggestions.
We showed in a user study that the approach reduced cybersickness
compared to a technique using manual speed change, although par-
ticipants still preferred the manual method. In the future, we want to
alleviate the method’s disadvantages by improving its interface, and
by allowing users to choose between different suggestions.

REFERENCES

[1] A.S. Fernandes and S. K. Feiner. Combating VR Sickness through

Subtle Dynamic Field-of-View Modification. In IEEE Symp. on 3D User

Interfaces (3DUI), pages 201-210, 2016.

S. Freitag, B. Weyers, A. Bonsch, and T. W. Kuhlen. Comparison and

Evaluation of Viewpoint Quality Estimation Algorithms for Immersive

Virtual Environments. In ICAT-EGVE 2015, pages 53-60, 2015.

S. Freitag, B. Weyers, and T. W. Kuhlen. Automatic Speed Adjustment

for Travel through Immersive Virtual Environments based on Viewpoint

Quality. In IEEE Symp. on 3D User Interfaces (3DUI), pages 67-70, 2016.

J.J. LaViola Jr. A Discussion of Cybersickness in Virtual Environments.

ACM SIGCHI Bulletin, 32(1):47-56, 2000.

[5] J. McCrae, 1. Mordatch, M. Glueck, and A. Khan. Multiscale 3D
Navigation. In Proc. of the ACM Symposium on Interactive 3D Graphics
and Games, pages 7-14, 2009.

[2

—

3

—

[4

—

